Шпаргалка: Классификация строительных материалов

Шпаргалка: Классификация строительных материалов.

Название: Классификация строительных материалов Раздел: Рефераты по строительству Тип: шпаргалка Добавлен 20:30:18 09 февраля 2011 Похожие работы Просмотров: 37822 Комментариев: 2 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать.

1. Классификация строительных материалов.

Строительные материалы и изделия классифицируют по степени готовности, происхождению, назначению и технологическому признаку.

По степени готовности различают собственно строительные материалы и строительные изделия — готовые изделия и элементы, монтируемые и закрепляемые на месте работы. К строительным материалам относятся древесина, металлы, цемент, бетон, кирпич, песок, строительные растворы для каменных кладок и различных штукатурок, лакокрасочные материалы, природные камни и т. д.

Строительными изделиями являются сборные железобетонные панели и конструкции, оконные и дверные блоки, санитарно-технические изделия и кабины и др. В отличие от изделий строительные материалы перед применением подвергают обработке — смешивают с водой, уплотняют, распиливают, тешут и т. д.

По происхождению строительные материалы подразделяют на природные и искусственные.

Природные материалы — это древесина, горные породы (природные камни), торф, природные битумы и асфальты и др. Эти материалы получают из природного сырья путем несложной обработки без изменения их первоначального строения и химического состава.

К искусственным материалам относят кирпич, цемент, железобетон, стекло и др. Их получают из природного и искусственного сырья, побочных продуктов промышленности и сельского хозяйства с применением специальных технологий. Искусственные материалы отличаются от исходного сырья как по строению, так и по химическому составу, что обусловлено коренной переработкой его в заводских условиях.

Наибольшее распространение получили классификации материалов по назначению и технологическому признаку.

По назначению материалы подразделяют на следующие группы.

конструкционные материалы — материалы которые воспринимают и передают на грузки в строительных конструкциях.

теплоизоляционные материалы . основное назначение которых — свести до минимума перенос теплоты через строительную конструкцию и тем самым обеспечить необходимый тепловой режим в помещении при минимальных затратах энергии.

акустические материалы (звукопоглощающие и звукоизоляционные материалы) — для снижения уровня «шумового загрязнения» помещения.

гидроизоляционные и кровельные материалы — для создания водонепроницаемых слоев на кровлях, подземных сооружениях и других конструкциях, которые необходимо защищать от воздействия воды или водяных паров.

герметизирующие материалы — для заделки стыков в сборных конструкциях.

отделочные материалы — для улучшения декоративных качеств строительных конструкций, а также для защиты конструкционных, теплоизоляционных и других материалов от внешних воздействий.

материалы специального назначения (например огнеупорные или кислотоупорные), применяемые при возведении специальных сооружений.

Ряд материалов (например цемент, известь, древесина) нельзя отнести к какой-либо одной группе, так как их используют и в чистом виде, и как сырье для получения других строительных материалов и изделий. Это так называемые материалы общего назначения . Трудность классификации строительных материалов по назначению состоит в том, что одни и те же материалы могут быть отнесены к разным группам. Например, бетон в основном применяют как конструкционный материал, но некоторые его виды имеют совсем иное назначение: особа легкие бетоны являются теплоизоляционным материалом; особо тяжелые бетоны — материалом специального назначения, который используют для защиты от радиоактивного излучения.

По технологическому признаку материалы подразделяют, учитывая вид сырья, из которого получают материал, и вид его изготовления, на следующие группы.

Природные каменные материалы и изделия — получают из горных пород путем их обработки: стеновые блоки и камни, облицовочные плиты, детали архитектурного назначения, бутовый камень для фундаментов, щебень, гравий, песок и др.

Керамические материалы и изделия — получают из глины с добавками путем формования, сушки и обжига: кирпич, керамические блоки и камни, черепица, трубы, изделия из фаянса и фарфора, плитки облицовочные и для настилки полов, керамзит (искусственный гравий для легких бетонов) и др.

Стекло и другие материалы и изделия из минеральных расплавов — оконное и облицовочное стекло, стеклоблоки, стекло профилит (для ограждений), плитки, трубы, изделия из ситаллов и шлакоситаллов, каменное литье.

Неорганические вяжущие вещества — минеральные материалы, преимущественно порошкообразные, образующие при смешивании с водой пластичное тело, со временем приобретающее камневидное состояние: цементы различных видов, известь, гипсовые вяжущие и др.

Бетоны — искусственные каменные материалы, получаемые из смеси вяжущего, воды, мелкого и крупного заполнителей. Бетон со стальной арматурой называют железобетоном, он хорошо сопротивляется не только сжатию, но и изгибу и растяжению.

Строительные растворы — искусственные каменные материалы, состоящие из вяжущего, воды и мелкого заполнителя, которые со временем переходят из тестообразного в камневидное состояние.

Искусственные необжиговые каменные материалы — получают на основе неорганических вяжущих и различных заполнителей: силикатный кирпич, гипсовые и гипсобетонные изделия, асбестоцементные изделия и конструкции, силикатные бетоны.

Органические вяжущие вещества и материалы на их основе — битумные и дегтевые вяжущие, кровельные и гидроизоляционные материалы: рубероид, пергамин, изол, бризол, гидроизол, толь, приклеивающие мастики, асфальтовые бетоны и растворы.

Полимерные материалы и изделия — группа материалов, получаемых на основе синтетических полимеров (термопластических нетермореактнвных смол): линолеумы, релин, синтетические ковровые материалы, плитки, древеснослоистые пластики, стеклопластики, пенопласты, поропласты, сотопласты и др.

Древесные материалы и изделия — получают в результате механической обработки древесины: круглый лес, пиломатериалы, заготовки для различных столярных изделий, паркет, фанера, плинтусы, поручни, дверные и оконные блоки, клееные конструкции.

Металлические материалы — наиболее широко применяемые в строительстве черные металлы (сталь и чугун), стальной прокат (двутавры, швеллеры, уголки), сплавы металлов, особенно алюминиевые.

2. Физические свойства строительных материалов.

Плотность материала бывает средней и истинной.

Средняя плотность с — масса единицы объема материала в естественном состоянии, т. е. с порами. Среднюю плотность (в кг/м3, кг/дм3, г/см3) вычисляют по формуле.

где m -масса материала, кг, г; Vе — объем материала, м3, дм3, см3.

Среднюю плотность сыпучих материалов — щебня, гравия, песка, цемента и др. — называют насыпной плотностью . В объем входят поры непосредственно в материале и пустоты между зернами.

Относительная плотность d — отношение средней плотности материала к плотности стандартного вещества. За стандартное вещество принята вода при температуре 4°С, имеющая плотность 1000 кг/м3. Относительная плотность (безразмерная величина) определяется по формуле.

Истинная плотность u — масса единицы объема абсолютно плотного материала, т. е. без пор и пустот. Вычисляется она в кг/м 3. кг/дм 3. г/см 3 по формуле.

где m — масса материала, кг, г; Vа — объем материала в плотном состоянии, м3, дм3, см3.

У неорганических материалов, природных и искусственных камней, состоящих в основном из оксидов кремния, алюминия и кальция, истинная плотность находится в пределах 2400-3100 кг/м3, у органических материалов, состоящих в основном из углерода, кислорода и водорода, она составляет 800-1400 кг/м 3. у древесины — 1550 кг/м 3. Истинная плотность металлов колеблется в широком диапазоне: алюминия — 2700 кг/м 3. стали — 7850, свинца — 11300 кг/м 3.

Пористость П — степень заполнения объема материала порами. Вычисляется в % по формуле.

где с, u — средняя и истинная плотности материала.

Для строительных материалов П колеблется от 0 до 90.

Для сыпучих материалов определяется пустотность (межзерновая пористость.

По величине пор материалы разделяют на мелкопористые, у которых размеры пор измеряются в сотых и тысячных долях миллиметра, и крупнопористые (размеры пор — от десятых долей миллиметра до 1.

3. Гидрофизические свойства строительных материалов.

Гигроскопичность — свойство капиллярно-пористого материала поглощать водяной пар из влажного воздуха. Поглощение влаги из воздуха объясняется адсорбцией водяного пара на внутренней поверхности пор и капиллярной конденсацией. Этот процесс, называемый сорбцией, обратимый. Волокнистые материалы со значительной пористостью, например теплоизоляционные и стеновые, обладают развитой внутренней поверхностью пор и поэтому высокой сорбционной способностью.

Водопоглощение — способность материала поглощать и удерживать воду. Водопоглощение характеризует в основном открытую пористость, так как вода не проходит в закрытые поры.

Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью . Водостойкость численно характеризуется коэффициентом размягчения К разм . который характеризует степень снижения прочности в результате его насыщения водой.

Влажность — это степень содержания влаги в материале. Зависит от влажности окружающей среды, свойств и структуры самого материала.

Водопроницаемость — способность материала пропускать воду под давлением. Она характеризуется коэффициентом фильтрации К ф . м/ч, который равен количеству воды Vв в м 3. проходящей через материал площадью S = 1 м 2. толщиной а = 1 м за время t = 1 ч, при разности гидростатического давления P1 — Р2 = 1 м водного столба.

Обратной характеристикой водопроницаемости является водонепроницаемость — способность материала не пропускать воду под давлением.

Паропроницаемость — способность материалов пропускать водяной пар через свою толщину. Она характеризуется коэффициентом паропроницаемости , г/(мхчхПа), который равен количеству водяного пара V в м 3. проходящего через материал толщиною а = 1м, площадью S = 1 м за время t = 1 ч, при разности парциальных давлений Р 1 — Р 2 = 133,3 Па.

Морозостойкость — способность материала в водонасыщенном состоянии не разрушаться при многократном попеременном замораживании и оттаивании.

Разрушение происходит из-за того, что объем воды при переходе в лед увеличивается на 9%. Давление льда на стенки пор вызывает растягивающие усилия в материале.

4. Теплофизические свойства строительных материалов.

Теплопроводность — способность материалов проводить тепло. Теплопередача происходит в результате перепада температур между поверхностями, ограничивающими материал. Теплопроводность зависит от коэффициента теплопроводности , Вт/(мx°С), который равен количеству тепла Q, Дж, проходящего через материал толщиной d = 1 м, площадью S = 1 м2 за время t = 1 ч, при разности температур между поверхностями t2- t1 = 1 °С.

При известной средней плотности, пользуясь нижеприведенной формулой, можно ориентировочно вычислить коэффициент теплопроводности , Вт/(мх°С), материала в воздушно-сухом состоянии.

Значительно возрастает теплопроводность материалов с увлажнением. Это объясняется тем, что коэффициент теплопроводности воды составляет 0,58 Вт/(мх°С), а воздуха 0,023 Вт/(мх°С), т.е. превышает его в 25 раз.

Теплоемкость — способность материалов поглощать тепло при нагревании. Она характеризуется удельной теплоемкостью с, Дж/(кгх°С), которая равна количеству тепла Q, Дж, затраченному на нагревание материала массой m = 1 кг, чтобы повысить его температуру на t 2 -t 1 = 1°С.

Огнестойкость — способность материала выдерживать без разрушений одновременное действие высоких температур и воды. Пределом огнестойкости конструкции называется время в часах от начала огневого испытания до появления одного из следующих признаков: сквозных трещин, обрушения, повышения температуры на необогреваемой поверхности. По огнестойкости строительные материалы делятся на три группы: несгораемые, трудносгораемые, сгораемые . Несгораемые материалы под действием высокой температуры или огня не тлеют и не обугливаются; трудносгораемые материалы с трудом воспламеняются, тлеют и обугливаются, но происходит это только при наличии огня; сгораемые материалы воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня.

Огнеупорность — способность материала противостоять длительному воздействию высоких температур, не деформируясь и не расплавляясь. По степени огнеупорности материалы подразделяются на огнеупорные . которые выдерживают действие температур от 1580 °С и выше; тугоплавкие . которые выдерживают температуру 1360. 1580°C; легкоплавкие . выдерживающие температуру ниже 1350 °С.

5. Механические свойства строительных материалов.

К основным механическим свойствам материалов относят прочность, упругость, пластичность, релаксацию, хрупкость, твердость, истираемость и др.

Прочность — способность материалов сопротивляться разрушению и деформациям от внутренних напряжений, возникающих в результате воздействия внешних сил или других факторов, таких как неравномерная осадка, нагревание и т. п. Оценивается она пределам прочности. Так называют напряжение, возникающее в материале от действия нагрузок, вызывающих его разрушение.

Различают пределы прочности материалов при сжатии, растяжении, изгибе, срезе и пр. Предел прочности при сжатии и растяжении R СЖ(Р ), МПа, вычисляется как отношение нагрузки, разрушающей материал Р, Н, к площади поперечного сечения F, мм 2.

Предел прочности при изгибе R И . МПа, вычисляют как отношение изгибающего момента M, Нхмм, к моменту сопротивления образца. мм 3.

Важной характеристикой материалов является коэффициент конструктивного качества . Это условная величина, которая равна отношению предела прочности материала R, МПа, к его относительной плотности.

Упругость — способность материалов под воздействием нагрузок изменять форму и размеры и восстанавливать их после прекращения действия нагрузок.

Упругость оценивается пределом упругости б уп . МПа, который равен отношению наибольшей нагрузки, не вызывающей остаточных деформаций материала, P УП . Н, к площади первоначального поперечного сечения F 0 . мм2.

Пластичность — способность материалов изменять свою форму и размеры под воздействием нагрузок и сохранять их после снятия нагрузок. Пластичность характеризуется относительным удлинением или сужением.

Разрушение материалов может быть хрупким или пластичным. При хрупком разрушении пластические деформации незначительны.

Релаксация — способность материалов к самопроизвольному снижению напряжений при постоянном воздействии внешних сил. Это происходит в результате межмолекулярных перемещений в материале.

Твердость — способность материала оказывать сопротивление проникновению в него более твердого материала.

Для разных материалов она определяется по разным методикам. Так, при испытании природных каменных материалов пользуются шкалой Мооса, составленной из 10 минералов, расположенных в ряд, с условным показателем твердости от 1 до 10, когда более твердый материал, имеющий более высокий порядковый номер, царапает предыдущий. Минералы расположены в следующем порядке: тальк или мел, гипс или каменная соль, кальцит или ангидрит, плавиковый шпат, апатит, полевой шпат, кварцит, топаз, корунд, алмаз.

Твердость металлов, бетона, древесины, пластмасс оценивают вдавливанием в них стального шарика, алмазного конуса или пирамиды.

Твердость материала не всегда соответствует прочности. Так, древесина имеет прочность, одинаковую с бетоном, но значительно меньшую твердость.

Истираемость — способность материалов разрушаться под действием истирающих усилий. Истираемость И в г/см 2 вычисляется как отношение потери массы образцом m 1 -m 2 в г от воздействия истирающих усилий к площади истирания F в см2.

Определяется И путем испытания образцов на круге истирания или в полочном барабане.

Износ — свойство материала сопротивляться одновременному воздействию истирания и ударов. Износ материала зависит от его структуры, состава, твердости, прочности, истираемости.

Хрупкость — свойство материала внезапно разрушаться под воздействием нагрузки, без предварительного заметного изменения формы и размеров. Хрупкому материалу, в отличие от пластичного, нельзя придать при прессовании желаемую форму, так как такой материал под нагрузкой дробится на части, рассыпается. Хрупки камни, стекло, чугун и др.

6. Понятие горная порода и минерал. Основные породообразующие минералы.

Горные породы — главный источник получения строительных материалов. Горные породы используют в промышленности строительных материалов как сырье для изготовления керамики, стекла, теплоизоляционных и других изделий, а также для производства неорганических вяжущих веществ — цементов, извести и гипсовых.

Горные породы — это природные образования более или менее определенного состава и строения, образующие в земной коре самостоятельные геологические тела.

Минералами называют однородные по химическому составу и физическим свойствам составные части горной породы. Большинство минералов — твердые тела, иногда встречаются жидкие (самородная ртуть.

В зависимости от условий формирования горные породы делят на три генетические группы.

1) магматические породы . образовавшиеся в результате охлаждения и затвердевания магмы.

2) осадочные породы . возникшие в поверхностных слоях земной коры из продуктов выветривания и разрушения различных горных пород.

3) метаморфические породы . являющиеся продуктом перекристаллизации и приспособления горных пород к изменившимся в земной коре физико-химическим условиям.

В настоящее время известно около 5000 минералов. В образовании же горных пород преимущественно участвуют 25 минералов. Основными породообразующими минералами являются кремнезем, алюмосиликаты, железисто-магнезиальные, карбонаты, сульфаты.

Минералы группы кремнезема . К минералам этой группы относят кварц . Он может находиться как в кристаллической, так и аморфной форме.

Кристаллический кварц в виде диоксида кремния SiО 2 — один из самых распространенных минералов в природе. Аморфный кремнезем встречается в виде опала SiО2 x NH 2 О. Кварц отличается высокой химической стойкостью при обычной температуре. Кварц плавится при температуре около 1700 о С, поэтому широко используется в огнеупорных материалах.

Минералы группы алюмосиликатов — полевые шпаты, слюды, каолиниты . Полевые шпаты составляют 58% всей литосферы и являются самыми распространенными минералами. Разновидностями их являются ортоклаз и плагиоклазы.

Ортоклаз — калиевый полевой шпат — K2О x Al2О3 x 6SiО2. Имеет среднюю плотность 2,57 г/см3, твердость — 6-6,5. Является основной частью гранитов, сиенитов.

Плагиоклазы — минералы, состоящие из смеси твердых растворов альбита и анортита.

Альбит — натриевый полевой шпат — Na2О x Al2О3 x 6SiО2. Анортит — кальциевый полевой шпат – CaO x Al2О3 x 2SiО2.

Плагиоклазы входят в состав кислых и основных горных пород.

Предел прочности полевых шпатов при сжатии составляет 120-170 МПа, что ниже прочности кварца. Они выветриваются под воздействием воды, содержащей углекислоту, в результате чего образуется каолинит.

Слюды — водные алюмосиликаты слоистого строения, способные расщепляться на тонкие пластинки. Наиболее часто встречаются два вида — мусковит и биотит . Мусковит — калиевая бесцветная слюда. Обладает высокой химической стойкостью, тугоплавка. Биотит — железисто-магнезиальная слюда черного или зелено-черного цветов.

Водной разновидностью слюды является вермикулит. Он образован из биотита в результате воздействия гидротермальных процессов. При нагревании вермикулита до 750 °С теряется химически связанная вода, в результате чего объем его увеличивается в 18-40 раз. Вспученный вермикулит применяют в качестве теплоизоляционного материала.

Каолинит — Al2О3 x 2SiО2 x 2H2О — минерал, получаемый в результате разрушения полевых шпатов и слюд. Залегает в виде землистых рыхлых масс. Применяют для изготовления керамических материалов.

Железисто-магнезиальные силикаты . Минералами этой группы являются пироксены, амфиболы и оливин.

К пироксенам относят авгит, входящий в состав габбро, к амфиболам — роговую обманку . входящую в состав гранитов.

Оливин входит в состав диабазов и базальтов . Продукт выветривания оливина — хризотил-асбест. Эти минералы являются силикатами магния и железа и имеют темную окраску. Они обладают высокой ударной вязкостью и стойкостью против выветривания.

Минералы группы карбонатов . К ним относят кальцит, магнезит, доломит . Они входят в состав осадочных горных пород.

Кальцит — СаСО3 — имеет среднюю плотность 2,7 г/см3, твердость — 3. Вскипает при воздействии слабого раствора соляной кислоты. Входит в состав известняков, мраморов, травертинов.

Магнезит — MgCО3 — имеет среднюю плотность 3,0 г/см3, твердость — 3,5-4. Вскипает от горячей соляной кислоты. Образует породу с тем же названием.

Доломит — CaCО3 x MgCО3 — имеет плотность 2,8-2,9 г/см3, твердость — 3,5-4. По свойствам занимает среднее положение между кальцитом и магнезитом. Входит в состав мраморов. Образует породу с таким же названием.

Минералы группы сульфатов — гипс и ангидрит.

Гипс — CaSО4 x 2H2О — имеет среднюю плотность 2,3 г/см3, твердость — 1,5-2,0, цвета — белый, серый, красноватый. Строение — кристаллическое. Хорошо растворяется в воде. Образует породу — гипсовый камень.

Ангидрит — CaSО4 — имеет среднюю плотность 2,9-3 г/см3, твердость — 3-3,5, строение — кристаллическое. При насыщении водой переходит в гипс.

7. Классификация горных пород по происхождению.

Каменные строительные материалы включают широкую номенклатуру изделий, получаемых из горных пород: рваный камень в виде кусков неправильной формы (бут, щебень и др.), изделия правильной формы (блоки, штучный камень, плиты, бруски), профилированные изделия и др.

По происхождению горные породы делят на три основных вида.

магматические, или изверженные (глубинные, или излившиеся), образовавшиеся в результате затвердевания в недрах земли или на ее поверхности, в основном из силикатного расплава — магмы.

осадочные . образовавшиеся путем осаждения неорганических и органических веществ на дне водных бассейнов и на поверхности земли.

метаморфические — кристаллические горные породы, возникшие в результате преобразования магматических или осадочных пород при воздействии температуры, давления и флюидов (существенно водно-углекислых газово-жидких или жидких, часто надкритических растворов.

Изверженные горные породы подразделяют на глубинные, излившиеся и обломочные.

Глубинные породы образовались в результате остывания магмы в недрах земной коры. Затвердевание происходило медленно и под давлением. В этих условиях расплав полностью кристаллизовался с образованием крупных зерен минералов.

К главнейшим глубинным породам относят гранит, сиенит, диорит и габбро.

Гранит состоит из зерен кварца, полевого шпата (ортоклаза), слюды или железисто-магнезиальных силикатов. Имеет среднюю плотность 2,6 г/см3, предел прочности при сжатии — 100-300 МПа. Цвета — серый, красный. Он обладает высокой морозостойкостью, малой истираемостью, хорошо шлифуется, полируется, стоек против выветривания. Применяют его для изготовления облицовочных плит, архитектурно-строительных изделий, лестничных ступеней, щебня.

Сиенит состоит из полевого шпата (ортоклаза), слюды и роговой обманки. Кварц отсутствует или имеется в незначительном количестве. Средняя плотность составляет 2,7 г/см3, предел прочности при сжатии — до 220 МПа. Цвета — светло-серый, розовый, красный. Он обрабатывается легче, чем гранит, применяют для тех же целей.

Диорит состоит из плагиоклаза, авгита, роговой обманки, биотита. Средняя плотность его составляет 2,7-2,9 г/см3, предел прочности при сжатии — 150-300 МПа. Цвета — от серо-зеленого до темно-зеленого. Он стоек против выветривания, имеет малую истираемость. Применяют диорит для изготовления облицовочных материалов, в дорожном строительстве.

Габбро — кристаллическая порода, состоящая из плагиоклаза, авгита, оливина. В составе его может быть биотит и роговая обманка. Имеет среднюю плотность 2,8-3,1 г/см3, предел прочности при сжатии — до 350 МПа. Цвета — от серого или зеленого до черного. Применяют для облицовки цоколей, устройства полов.

Излившиеся горные породы образовались при остывании магмы на небольшой глубине или на поверхности земли. К излившимся породам относят порфиры, диабаз, трахит, андезит, базальт.

Порфиры являются аналогами гранита, сиенита, диорита. Средняя плотность составляет 2,4-2,5 г/см3, предел прочности при сжатии — 120-340 МПа. Цвета — от красно-бурого до серого. Структура — порфировидная, т. е. с крупными вкраплениями в мелкозернистую структуру, чаще всего ортоклаза или кварца. Их применяют для изготовления щебня, декоративно-поделочных целей.

Диабаз является аналогом габбро, имеет кристаллическую структуру. Средняя плотность его составляет 2,9-3,1 г/см3, предел прочности при сжатии — 200-300 МПа, цвета — от темно-серого до черного. Применяют для наружной облицовки зданий, изготовления бортовых камней, в виде щебня для кислотоупорных футеровок. Температура плавления его невысокая — 1200-1300 °С, что позволяет применять диабаз для каменного литья.

Трахит является аналогом сиенита. Имеет тонкопористое строение. Средняя плотность его составляет 2,2 г/см3, предел прочности при сжатии — 60-70 МПа. Окраска — светло-желтая или серая. Применяют для изготовления — стеновых материалов, крупного заполнителя для бетона.

Андезит является аналогом диорита. Имеет среднюю плотность 2,9 г/см3, прочность при сжатии — 140-250 МПа, окраску — от светлой до темно-серой. Применяют в строительстве — для изготовления ступеней, облицовочного материала, как кислотостойкий материал.

Базальт — аналог габбро. Имеет стекловидную или кристаллическую структуру. Средняя плотность его составляет 2,7-3,3 г/см3, предел прочности при сжатии — от 50 до 300 МПа. Цвета — темно-серый или почти черный. Применяют для изготовления бортовых камней, облицовочных плит, щебня для бетонов. Является сырьем для изготовления каменных литых материалов, базальтового волокна.

Обломочные породы представляют собой выбросы вулканов . В результате быстрого охлаждения магмы образовались породы стекловидной пористой структуры. Их подразделяют на рыхлые и цементированные . К рыхлым относят вулканические пеплы, песок и пемзу.

Вулканические пеплы — порошкообразные частицы вулканической лавы размером до 1 мм. Более крупные частицы размером от 1 до 5 мм называют песком. Пеплы применяют как активную минеральную добавку в вяжущие, пески — в качестве мелкого заполнителя для легких бетонов.

Пемза — пористая порода ячеистого строения, состоящая из вулканического стекла. Пористая структура образовалась в результате воздействия газов и паров воды на остывавшую лаву, средняя плотность составляет 0,15-0,5 г/см3, предел прочности при сжатии — 2-3 МПа. В результате высокой пористости (до 80%,) имеет низкий коэффициент теплопроводности А = 0,13. 0,23 Вт/(м·°С). Применяют ее в виде заполнителей для легких бетонов, теплоизоляционных материалов, в качестве активной минеральной добавки для извести и цементов.

К цементированным породам относят вулканические туфы.

Вулканические туфы — пористые стекловидные породы, образовавшиеся в результате уплотнения вулканических пеплов и песков. Средняя плотность туфов составляет 1,25-1,35 г/см3, пористость — 40-70%, предел прочности при сжатии — 8-20 МПа, коэффициент теплопроводности 1 = 0,21. 0,33 Вт/(м·°С). Цвета — розовый, желтый, оранжевый, голубовато-зеленый. Применяют их в качестве стенового материала, облицовочных плит для внутренней и наружной облицовки зданий.

К метаморфическим горным породам относят гнейсы, глинистые сланцы, кварцит, мрамор.

8. Магматические горные породы. Условия образования. Виды.

Магматические горные породы — это породы, образовавшиеся непосредственно из магмы (расплавленной массы преимущественно силикатного состава), в результате её охлаждения и застывания. По условиям образования различают две подгруппы магматических горных пород.

• интрузивные (глубинные), от латинского слова “интрузио” – внедрение.

• эффузивные (излившиеся) от латинского слова “эффузио” – излияние.

Интрузивные (глубинные) горные породы образуются при медленном постепенном остывании магмы, внедренной в нижние слои земной коры, в условиях повышенного давления и высоких температур. Выделение минералов из вещества магмы при ее остывании происходит строго в определенной последовательности, каждый минерал имеет свою температуру образования. Сначала образуются тугоплавкие темноцветные минералы ( пироксены, роговая обманка, биотит, …), далее рудные минералы . затем полевые шпаты и последним выделяется в виде кристаллов кварц . Главные представители интрузивных магматических горных пород – граниты, диориты, сиениты, габбро, перидотиты.

Эффузивные (излившиеся) горные породы образуются при остывании магмы в виде лавы (от итальянского “лава” – затопляю) на поверхности земной коры или вблизи нее. По вещественному составу эффузивные горные породы сходны с глубинными, они образуются из одной и той же магмы, но в разных термодинамических условиях (давлении, температуре и др.). На поверхности земной коры магма в виде лавы остывает значительно быстрее, чем на некоторой глубине от нее. Главные представители эффузивных магматических горных пород – обсидианы, туфы, пемзы, базальты, андезиты, трахиты, липариты, дациты, риолиты.

Основные отличительные признаки эффузивных (излившихся)магматических горных пород, которые определяются их происхождением иусловиями образования, следующие.

• для большинства образцов грунтов характерна некристаллическая, тонко-,мелкозернистая структура с отдельными видимыми глазом кристаллами.

• для некоторых образцов грунтов характерно наличие пустот, пор, пятен.

• в некоторых образцах грунтов присутствует какая-либо закономерность пространственной ориентировки компонентов (окраски, овальных пустот и др.

Отличия эффузивных горных пород друг от друга, как и интрузивных горных пород друг от друга, определяются условиями их образования и вещественным составом магмы, что проявляется в различной их окраске (светлые – темные) и составе компонентов.

В основе химической классификации лежит процентное содержание кремнезёма (SiO 2 ) в породе. По этому показателю выделяют ультракислые, кислые, средние, основные и ультраосновные породы.

9. Осадочные горные породы. Условия образования. Виды.

Осадочные горные породы по условиям образования подразделяют на обломочные (механические отложения), химические осадки и органогенные.

Обломочные породы образовались в результате физического выветривания, т. е. воздействия ветра, воды, знакопеременных температур. Их подразделяют на рыхлые и цементированные . К рыхлым относят песок, гравий, глину.

=Песок представляет собой смесь зерен с размером частиц от 0,1 до 5 мм, образовавшуюся в результате выветривания изверженных и осадочных горных пород.

=Гравий — горная порода, состоящая из округлых зерен от 5 до 150 мм различного минералогического состава. Применяют для бетонов и растворов, в дорожном строительстве.

=Глины — тонкообломочные породы, состоящие из частиц мельче 0,01 мм. Цвета — от белого до черного. По составу подразделяют на каолинитовые, монтмориллокитовые, галлуазитовые . Являются сырьем для керамической и цементной промышленности.

К цементированным осадочным горным породам относят песчаник, конгломерат и брекчию.

=Песчаник — горная порода, состоящая из цементированных зерен кварцевого песка. Природными цементами служат глина, кальцит, кремнезем. Средняя плотность кремнистого песчаника составляет 2,5-2,6 г/см 3. предел прочности при сжатии — 100-250 МПа. Применяют для изготовления щебня, облицовки зданий и сооружений.

=Конгломерат и брекчия . Конгломерат — горная порода, состоящая из зерен гравия, сцементированных природным цементом, брекчия — из сцементированных зерен щебня. Средняя плотность их составляет 2,6-2,85 г/см 3. предел прочности при сжатии — 50-160 МПа. Применяют конгломерат и брекчию для покрытия полов, изготовления заполнителей для бетона.

Химические осадки образовались в результате выпадения солей при испарении воды в водоемах. К ним относят гипс, ангидрит, магнезит, доломит и известковые туфы.

=Гипс состоит в основном из минералов гипса — CaSО 4 x 2H 2 О. Это порода белого или серого цвета. Применяют для изготовления гипсовых вяжущих веществ и для облицовки внутренних частей зданий.

=Ангидрит включает минералы ангидрита — CaSО 4 . Цвета — светлые с голубовато-серыми оттенками. Применяют там же, где и гипс.

=Магнезит состоит из минерала магнезита — MgCО 3 . Применяют его для изготовления вяжущего каустического магнезита и огнеупорных изделий.

=Доломит включает минерал доломита — CaCО 3 x MgCО 3 . Цвет — серо-желтый. Применяют для изготовления облицовочных плит и внутренней облицовки, щебня, огнеупорных материалов, вяжущего вещества — каустического доломита.

=Известковые туфы состоят из минерала кальцита – СаСО 3 . Это пористые породы светлых тонов. Имеют среднюю плотность 1,3-1,6 г/см 3. предел прочности при сжатии — 15-80 МПа. Из них изготавливают штучные камни для стен, облицовочные плиты, легкие заполнители для бетонов, известь.

Органогенные породы образовались в результате жизнедеятельности и отмирания организмов в воде. К ним относят известняки, мел, диатомит, трепел.

=Известняки — горные породы, состоящие в основном из кальцита – СаСО 3 . Могут содержать примеси глины, кварца, железисто-магнезиальных и других соединений. Образовались в водных бассейнах из остатков животных организмов и растений. По структуре известняки подразделяют на плотные, пористые, мраморовидные, ракушечниковые и другие. Плотные известняки имеют среднюю плотность 2,0-2,6 г/см3, предел прочности при сжатии — 20-50 МПа; пористые — среднюю плотность 0,9-2,0 г/см3, предел прочности при сжатии — от 0,4 до 20 МПа. Цвета — белый, светло-серый, желтоватый. Применяют их для изготовления облицовочных плит, архитектурных деталей, щебня, в качестве сырья для цемента, извести. Известняк-ракушечник состоит из раковин моллюсков и их обломков. Это пористая порода со средней плотностью 0,9-2,0 г/см3, с пределом прочности при сжатии — 0,4-15,0 МПа. Применяют для изготовления стеновых материалов и плит для внутренней и наружной облицовки зданий.

=Мел — горная порода, состоящая из кальцита – СаСО3. Образована раковинами простейших животных организмов. Цвет — белый. Применяется для приготовления красочных составов, замазки, изготовления извести, цемента.

=Диатомит — горная порода, состоящая из аморфного кремнезема. Образована мельчайшими панцирями диатомовых водорослей и скелетами животных организмов. Слабосцементированная или рыхлая порода со средней плотностью 0,4-1,0 г/см3. Цвет — белый с желтоватым или серым оттенком.

= Трепел — сходная с диатомитом порода, но более раннего образования. Сложена, в основном, сферическими тельцами опала и халцедона. Применяют диатомит и трепел для изготовления теплоизоляционных материалов, легкого кирпича, активных добавок в вяжущие вещества.

10. Метаморфические горные породы. Условия образования. Виды.

К метаморфическим горным породам относят гнейсы , глинистые сланцы, кварцит, мрамор.

Гнейсы — сланцевые породы, образовавшиеся чаще всего в результате перекристаллизации гранитов при высокой температуре и одноосном давлении. Их минералогический состав — как у гранитов. Средняя плотность составляет 2,5-2,6 г/см3, предел прочности при сжатии — 129-300 МПа. Цвета — серый, розовый, красный. Применяют их для изготовления облицовочных плит, бутового камня.

Глинистые сланцы — породы, образовавшиеся в результате видоизменения глины под большим давлением. Средняя плотность составляет 2,7-2,9 г/см3, предел прочности при сжатии — 60-120 МПа. Цвета — темно-серый, черный. Раскалываются на тонкие пластинки толщиной 3-10 мм. Применяют для изготовления облицовочных и кровельных материалов.

Кварцит — мелкозернистая горная порода, образовавшаяся в результате перекристаллизации кремнистых песчаников. Средняя плотность составляет 2,5-2,7 г/см3, предел прочности при сжатии — до 400 МПа. Цвета — серый, розовый, желтый, темно-вишневый, малиново-красный и др. Применяют для облицовки зданий, архитектурно-строительных изделий, в виде щебня.

Мрамор — горная порода, образовавшаяся в результате перекристаллизации известняков и доломитов при высоких температурах и давлении. Средняя плотность составляет 2,7-2,8 г/см3, предел прочности при сжатии — 40-170 МПа. Окраска — белая, серая, цветная. Он легко распиливается, шлифуется, полируется. Применяют для изготовления архитектурных изделий, облицовочных плит, в качестве заполнителя для декоративных растворов и бетонов.

11. Применение природных каменных материалов в строительстве.

Основные виды природных каменных материалов и изделий.

Природные каменные материалы подразделяют на сырьевые и готовые материалы и изделия.

К сырьевым материалам относят щебень, гравий и песок . применяемые в качестве заполнителей для бетонов и растворов; известняк, мел, гипс, доломит, магнезит, глина, мергели и другие горные породы — для изготовления строительной извести, гипсовых вяжущих, магнезиальных вяжущих, портландцементов.

Готовые каменные материалы и изделия подразделяют на материалы и изделия для дорожного строительства, стен и фундаментов, облицовки зданий и сооружений. К каменным материалам для дорожного строительства относят булыжный, колотый, брусчатый и бортовые камни, щебень, гравий, песок. Их получают из изверженных и прочных осадочных горных пород.

Булыжный камень представляет собой зерна горной породы с овальными поверхностями размером до 300 мм.

Колотый камень должен иметь форму, близкую к многогранной призме или усеченной пирамиде с площадью лицевой поверхности не менее 100 см 2 для камней высотой до 160 мм, не менее 200 см 2 — при высоте до 200 мм и не менее 400 см 2 — при высоте до 300 мм. Верхняя и нижняя плоскости камня должны быть параллельными.

Булыжный и колотый камни применяют для устройства оснований и покрытий автомобильных дорог, крепления откосов насыпей, каналов.

Камень брусчатый для дорожных покрытий имеет форму прямоугольного параллелепипеда. По размерам подразделяют на высокий (БВ), длиной 250, шириной 125 и высотой 160 мм, средний (БС) с размерами соответственно 250, 125, 130 мм и низкий (БН) с размерами 250,100 и 100 мм. Верхняя и нижняя плоскости камня параллельны, боковые грани для БВ и БС сужены на 10 мм, для БН — на 5 мм. Изготавливают его из гранита, базальта, диабаза и других горных пород с пределом прочности при сжатии 200-400 МПа. Применяют для мощения площадей, улиц.

Камни бортовые из горных пород применяют для отделения проезжей части дорог от разделительных полос тротуаров, пешеходных дорожек и тротуаров от газонов и т. п. По способу изготовления подразделяют на пиленые и колотые. По форме бывают прямоугольные и криволинейные. Имеют высоту от 200 до 600, ширину — от 80 до 200 и длину — от 700 до 2000 мм.

Бутовый камень — куски камня неправильной формы размером не более 50 см по наибольшему измерению. Бутовый камень может быть рваный (неправильной формы), и постелистый.

Щебень представляет собой рыхлый материал, полученный дроблением скальных горных пород с прочностью 80-120 МПа. При размере зерен от 5 до 40 мм его применяют для черного щебня и асфальтобетона при строительстве автомобильных дорог, щебень с зернами от 5 до 60 мм служит для устройства балластного слоя железнодорожного пути.

Гравий — рыхлый материал, образовавшийся при естественном разрушении горных пород. Имеет скатанную форму. Для изготовления черного гравия применяют гравий с размером зерен от 5 до 40 мм, а для асфальтобетона его дробят обычно на щебень.

Песок — рыхлый материал с размерами зерен от 0,16 до 5 мм, образовавшийся в результате естественного разрушения или полученный искусственным дроблением горных пород. Применяют его для подстилающих слоев дорожных одежд, приготовления асфальтовых и цементных бетонов и растворов.

12. Защита природных каменных материалов.

Защита, транспортирование и хранение природных каменных материалов.

Каменные материалы в условиях службы в конструкциях и сооружениях могут подвергаться медленному разрушению. Этот процесс по аналогии с разрушением горных пород на земной поверхности называют выветриванием. Основные причины разрушения каменных материалов в сооружениях.

-растворяющее действие воды, усиливающееся растворенными в ней газами (SО 2 . CO 2 и др.

-замерзание воды в порах и трещинах, сопровождающееся появлением в материале больших внутренних напряжений.

-резкое изменение температур, вызывающее появление на поверхности материала микротрещин.

Все мероприятия по защите каменных материалов от выветривания направлены на повышение их поверхностной плотности и на предохранение от воздействия влаги.

Стойкость материалов против выветривания можно повысить конструктивными мерами, к числу которых относят обеспечение хорошего стока воды и придание камням плотной и гладкой поверхности, например зеркальной. Стойкость против выветривания пористых материалов существенно повышается при создании на их лицевой поверхности плотного водонепроницаемого ( гидрофобизующего ) слоя.

Во время транспортирования и хранения природных каменных материалов и изделий из них необходимо соблюдать меры, исключающие их механическое повреждение, загрязнение и увлажнение.

Облицовочные плиты перевозят в прочной таре, приспособленной для механизированной погрузки и разгрузки. При транспортировке плиты следует устанавливать в вертикальном положении попарно лицевыми поверхностями внутрь с прокладкой между ними бумаги и закреплять клиньями.

Камни облицовочные и ступени укладывают рядами, используя деревянные прокладки. Плиты для полов хранят уложенными на длинное ребро в один ряд по высоте.

13. Понятие минеральные вяжущие вещества, виды.

Вяжущие вещества — строительные материалы для изготовления бетонов и растворов. Различают неорганические (минеральные) вяжущие вещества( цемент, гипс, известь и др .) и органические (битумы, дегти, пеки.

Минеральные вяжущие вещества (обычно порошкообразные) при смешивании с водой (иногда с водными растворами солей) образуют пластичную массу, приобретающую затем камневидное состояние. Их делят на гидравлические . способные твердеть и сохранять прочность на воздухе и в воде (напр. портландцемент), и воздушные . твердеющие и сохраняющие прочность только на воздухе (гипс, известь.

14. Гипсовые вяжущие. Сырье и условия получения.

Сырьем для производства гипсовых вяжущих веществ служат сульфатные горные породы, преимущественно минерал двуводный гипс (СаSO 4 *Н 2 О.

При тепловой обработке природный гипс постепенно теряет часть химически связанной воды, а при температуре от 110 до 180°С становится полуводным гипсом. После тонкого измельчения этого продукта обжига получают гипсовое вяжущее вещество.

Низкообжиговые гипсовые вяжущие вещества условно разделяют на строительный, формовочный и высокопрочный гипсы.

Гипс строительный является продуктом обжига тонкоизмельченного двуводного гипса. На отдельных заводах после обжига гипс подвергают вторичному помолу. Он относится к мелкокристаллической разновидности гипсового вяжущего вещества, что увеличивает водопотребность при затворении строительного гипса водой до стандартной консистенции теста. В отвердевшем состоянии обладает невысокой прочностью — 2. 16 МПа. Но прочность на сжатие уменьшается с увлажнением образцов.

Гипс формовочный состоит также из полугидрата сульфата кальция, отличаясь от гипса строительного большей тонкостью помола.

Гипс высокопрочный является продуктом тонкого помола а-полугидрата, получаемого в результате тепловой обработки в условиях, в которых вода из гипса выделяется в капельно-жидком состоянии. Такие условия возможны в автоклаве в среде насыщенного пара при давлении 0,15. 0,3 МПа. Вместо автоклавов возможно использование в качестве тепловой среды водных растворов некоторых солей, например хлористого кальция.

Гипс высокообжиговый (эстрихгипс). При температурах обжига (800. 950°С) помимо обезвоживания гипсового сырья происходит и частичная термическая диссоциация с образованием СаО, активизирующим химическое взаимодействие вяжущего с водой и ускоряющим процессы твердения. Начало схватывания наступает не ранее 2 ч, предел прочности при сжатии составляет 10. 20 МПа, а водостойкость несколько выше, чем у гипсовых вяжущих и ангидритового цемента. Его применяют для изготовления декоративных и отделочных материалов, например искусственного «мрамора», штукатурных растворов, устройства бесшовных полов и подготовки под линолеум.

Отличительной особенностью гипсовых вяжущих веществ является их низкий срок схватывания, что вызывает определенное неудобство при производстве строительных работ. По срокам схватывания они разделяются на быстро-, нормально- и медленнотвердеющие . Для продления сроков схватывания в гипсовое тесто нередко вводят добавки-замедлители, например кератиновый клей, сульфитно-дрожжевую бражку и др. Они адсорбируются частицами гипса, что затрудняет их растворение и начало схватывания.

15. Твердение и свойства гипсовых вяжущих.

Как и любые вяжущие вещества, гипсовые вяжущие при смешивании с водой образуют пластичное тесто, превращающееся со временем в камневидное тело.

В процессе твердения гипсовых вяжущих можно выделить три этапа.

1 ) подготовительный — образование раствора, насыщенного по отношению к продуктам гидратации.

2 ) период коллоидации (схватывание) — переход новообразований в раствор в гелеобразном виде, минуя растворение.

3) период кристаллизации (твердение) — перекристаллизация коллоидных частиц в большие кристаллы и образование сростка.

При твердении строительного гипса происходит химическая реакция присоединения воды и образования двуводного сульфата кальция CaSO 4* 0,5H 2 O + 1,5Н 2 0 = CaS0 4* 2H 2 0.

Схватывание (загустевание) гипсового теста начинается с образования рыхлой пространственной коагуляцнонной структуры, в которой кристаллики двугидрада связаны слабыми ван-дер-ваальсовыми силами молекулярного сцепления. После схватывания происходит твердение, обусловленное ростом кристаллов новой фазы, их срастанием и образованием кристаллизационной структуры. Свежеизготовленные гипсовые изделия сушат (при 60—70°С), что повышает прочность контактов срастания кристаллов и самих изделий вследствие удаления пленочной воды.

Основными характеристиками гипсовых вяжущих служат сроки схватывания . тонкость помола, прочность при сжатии и растяжении, водопотребность и др.

Тонкость помола характеризуется массой гипсового вяжущего (% пробы, взятой для просеивания, но не менее 50 г), оставшегося при просеивании на сите с ячейками размером в свету 0,2 мм. Установлены три степени помола, обозначаемые соответственно I, II, III: I (грубый помол) -остаток на сите не более 30 %; II (средний помол)- остаток на сите не более 15%; III (тонкий помол)— остаток на сите не более 2.

Водопотребность гипсового вяжущего определяется количеством воды, % массы вяжущего, необходимым для получения гипсового теста стандартной консистенции (диаметр расплыва 180±5 мм.

По срокам схватывания ГОСТ 125-79 предусматривает выпуск следующих вяжущих.

быстротвердеющего (индекс А) — с началом схватывания не ранее 2 мин, конец — не позднее 15 мин.

нормально твердеющего (индекс Б) -с началом схватывания не ранее 6 мин, конец — не позднее 30 мин.

медленнотвердеющего (индекс В)-с началом схватывания не ранее 20 мин (конец схватывания не нормируется.

В зависимости от степени помола различают вяжущие грубого, среднего и тонкого помола с максимальным остатком на сите с размером ячеек 0,2 мм не более соответственно 23% 14% и 2%, обозначаемые индексами I, II и III.

Марку гипсовых вяжущих (от Г-2 до Г-25) характеризуют по прочности при сжатии образцов- балочек 40x40x160 мм в возрасте 2 ч после затворения водой. Минимальный предел прочности при сжатии соответствующих марок меняется в пределах 2-25 МПа, а при изгибе- 1,2-8,0 МПа.

Чтобы получить гипсовое удобоукладываемое тесто, необходимо взять 60-80% воды от массы вяжущего, а на химическую реакцию гидратации требуется лишь 18,6% воды. Избыток ее остается в порах, затем испаряется, поэтому получившийся в результате твердения полуводного гипса гипсовый камень обладает высокой пористостью, достигающей 40-60% и более. Чем больше воды затворения, тем выше пористость камня, а прочность его соответственно меньше. Прочность гипсовых образцов, высушенных при температурах до 330 К, в 2-2,5 раза выше прочности влажных образцов после 1,5 ч твердения.

16. Воздушная известь. Сырье и условия получения.

Сырьем для производства воздушной извести служат плотные известняки, ракушечники, мел, доломитизированные известняки при условии, что содержание глинистых примесей в них не превышает 6%. Сырье обжигают при температуре 1000. 1200°С до полного удаления углекислого газа. Обжиг известняка производится в печах различных конструкций: шахтных, вращающихся, с «кипящим» слоем, в циклонно-вихревых печах во взвешенном состоянии, а также на движущихся агломерационных решетках. Распространен обжиг в шахтных печах, которые надежны в эксплуатации, позволяют использовать местные виды топлива и требуют меньшего его расхода, После обжига получают комовую известь или известь-кипелку (так ее называют из-за бурной химической реакции с водой). Это вещество обладает сильно развитой внутренней микропористостью и большим запасом свободной внутренней энергии, что проявляется при гашении комовой извести, т. е. присоединении воды с выделением большого количества теплоты.

Известняки при обжиге разлагаются на известь СаО и углекислый газ, который полностью удаляется. Реакция разложения известняка обратимая.

Признаком высокого качества извести является высокое содержание в ней СаО + MgO. Недожог и пережог извести в печи снижают ее качество. Особенно опасен пережог — остеклованная известь. Частицы пережога медленно гасятся с увеличением в объеме и могут вызвать трещины в штукатурке и изделиях.

Содержание чистых окислов CaO + MgO в общем количестве извести называют ее активностью. По активности и содержанию непогасившихся зерен определяется сорт извести.

Гашение извести производится в условиях стройплощадки в творильных ящиках с сеткой для сцеживания разжиженного известкового теста (известкового молока) в гасильную яму, где оно выдерживается длительное время. В заводских условиях известь гасят в специальных барабанных гасителях. Гашение извести производят в пушонку или в известковое тесто. При расходе воды 1 л на 1 кг извести комовой известь превращается в тонкий рыхлый порошок со значительным увеличением в объеме; при расходе воды 2. 3 л на 1 кг извести получается известковое тесто, что тоже сопровождается увеличением в объеме. Для получения из пушонки известкового теста ее разбавляют водой. Обычно содержание воды в известковом тесте составляет примерно 50% (по массе). Гашеная известь медленно схватывается и твердеет, обладает низкой прочностью, поэтому кроме гашеной извести в строительстве применяют известь негашеную. По содержанию оксида магния в извести она подразделяется на кальциевую (MgO 5%), магнезиальную (MgO = 5. 20%) и доломитовую (MgO = 20. 40%); по времени гашения различают известь быстрогасящуюся (время гашения 8 мин), среднегасящуюся (время гашения 8. 25 мин) и медленногасящуюся (время гашения не менее 25 мин.

Воздушную известь применяют для приготовления кладочных и отделочных растворов, изготовления штучных бетонных изделий, например известковошлаковых, силикатного кирпича и других известково-песчаных изделий автоклавного твердения.

17. Твердение и свойства воздушной извести.

Известь применяют в виде строительных растворов, т.е. в смеси с песком и другими заполнителями. На воздухе известковый раствор постепенно отвердевает под влиянием двух одновременно протекающих процессов: а) высыхания раствора, сближения кристаллов Са(ОН) 2 и их срастания; б) карбонизации извести под действием углекислого газа, который в небольшом количестве содержится в воздухе: Са(ОН) 2 + С0 2 -» СаС0 3 + Н 2 0.

Образующийся карбонат кальция срастается с кристаллами Са(ОН) 2 и упрочняет известковый раствор. При карбонизации выделяется вода, поэтому штукатурку и стены, в которых применены известковые растворы, подвергают сушке. Известковые растворы твердеют медленно, сушка ускоряет процесс их твердения. Для ускорения твердения к извести добавляют цемент и гипс. Цемент и активные минеральные добавки повышают также водостойкость известковых растворов.

Известковое тесто, защищенное от высыхания, неограниченно долго сохраняет пластичность, т. е. у извести отсутствует процесс схватывания. Затвердевшее известковое тесто при увлажнении вновь переходит в пластичное состояние (известь — неводостойкий материал.

Однако при длительном твердении (десятилетия) известь приобретает довольно высокую прочность и относительную водостойкость (например, в кладке старых зданий). Это объясняется тем, что на воздухе известь реагирует с углекислым газом, образуя нерастворимый в воде и довольно прочный карбонат кальция, т. е. как бы обратно переходит в известняк.

18. Применение гипсовых вяжущих и воздушной извести.

строительный материал гипсовый вяжущий.

Область применения воздушной извести — приготовление известково-песчаных и смешанных строительных растворов, которые используют в каменной кладке и при оштукатуривании поверхностей, а также для побелки и в производстве силикатных изделий.

В зависимости от содержания оксида магния воздушная известь разделяется на кальциевую (MgO 5%), магнезиальную (MgO = 5-20%) и высокомагнезиальную, или доломитовую (MgO = 20-40.

Наиболее важные показатели качества извести: активность — процентное содержание оксидов, способных гаситься; количество непогасившихся зерен (недожог и пережог); время гашения.

В зависимости от времени гашения извести всех сортов различают: быстрогасящуюся известь с временем гашения до 8 мин, среднегасящуюся — время гашения не превышает 25 мин и медленно гасящуюся с временем гашения более 25 мин.

Строительные растворы на воздушной извести имеют невысокую прочность. Так, известковые растворы через 28 суток воздушного твердения имеют прочность при сжатии: на гашеной извести 0,4-1 МПа, на молотой негашеной извести до 5 МПа. Поэтому сорт воздушной извести устанавливают не по прочности, а по характеристикам ее состава (табл. 5.1). Чем меньше глинистых и других примесей в исходном известняке, тем выше активность извести, быстрее происходит ее гашение и больше выход известкового теста.

Марки гипса от Г-2 до Г-7 (группы А, Б, В и I, II, III) применяют для изготовления разнообразных гипсовых строительных изделий. Марки Г-2 до Г-7 (группы А, Б и II, III) применяют для изготовления тонкостенных строительных изделий и декоративных деталей. Марки от Г-2 до Г-25 (Б, В и II, III) применяют в штукатурных работах, для заделки швов и в специальных целях.

19. Магнезиальные вяжущие и жидкое стекло.

Сырьем для магнезиальных вяжущих служат магнезит и доломит.

Обжиг магнезита производится при температуре 750. 800°С (во вращающихся печах до 1000°С) до полного разложения MgСОз на MgO и СО 2 с удалением углекислого газа. После помола MgO представляет собой воздушное вяжущее вещество, называемое каустическим магнезитом . оно имеет предел прочности при сжатии 40. 60 МПа, достигая иногда до 100 МПа.

Обжиг доломита производят при более низких температурах в интервале 650. 750 о С, так как при повышении температуры обжига начинает разлагаться и СаСОз с образованием извести.

Особенностью применения магнезиальных вяжущих веществ является затворение их водными растворами магнезиальных солей, причем начало схватывания наступает не позднее 20 мин, а конец — не позднее 6 ч.

Растворимое (жидкое) стекло.

Для производства растворимого стекла сырьем служат в основном чистый кварцевый песок и кальцинированная сода или сернокислый натрий . значительно реже вторым компонентом является поташ.

Тщательно перемешанную сырьевую смесь расплавляют в стекловаренных печах при температуре 1300. 1400°С, а затем стекломассу выгружают в вагонетки. При быстром охлаждении она твердеет и раскалывается на куски, именуемые силикат- глыбой . Лучше всего растворять силикат-глыбу в автоклавах при давлении 0,6. 0,7 МПа и температуре 150°С, превращая ее в сиропообразную жидкость. Жидкое (растворимое) стекло применяют для производства кислотоупорных цементов, жароупорных бетонов, силикатных красок и обмазок, для пропитки (силикатизации) грунтовых оснований.

20. Портландцемент. Сырье и условия получения. Способы производства цемента.

Портландцементом называют гидравлическое вяжу щее вещество, в составе которого преобладают силикаты кальция ( 70-80 % ) . Портландцемент — продукт тонкого измельчения клинкера с добавкой (3-5 %) гипса . Клинкер представляет собой зернистый материал (в виде порошка или гранул), полученный обжигом до спекания (при 1450 о С) сырьевой смеси, состоящей в основном из карбоната кальция (различных видов известняков) и алюмосиликатов (глин, мергеля, доменного шлака и др.

Основные свойства портландцемента обусловливаются составом клинкера. Качество клинкера определяет все свойства портландцемента; добавки же, вводимые в цемент, лишь регулирует его свойства. Качество клинкера зависит от его химического и минерального состава, тщательности подготовки сырьевой массы, условий проведения ее обжига и режима охлаждения.

Сырье для получения портландцемента . В качестве сырья иногда используют природные горные породы — мергели . В них содержатся необходимые для производства портландцементов количества каронатных (75. 78 %) и глинистых пород (25. 22 %). В большинстве случаев необходимое сочетание пород получается искусственным путем. В этом случае в качестве карбонатных пород используются известняки, мел, известковые ракушечники; в качестве глинистых — глины, глинистые сланцы, лёссы, доменные шлаки ; кроме того, в состав сырьевой смеси вводятся различные корректирующие добавки, например гипс . Гипс необходим для регулирования сроков схватывания . С увеличением количества гипса увеличиваются (замедляются) сроки схватывания. Однако максимальное количество вводимого гипса регламентируется химическим составом портландцемента.

Производство портландцемента . Производство портландцемента состоит из следующих процессов: добычи сырья и доставки его на завод; подготовки сырья и смеси ; обжига смеси — получения клинкера; измельчения клинкера с добавками — получения цемента.

По характеру подготовки сырья и приготовления смеси различают мокрый и сухой способы изготовления цемента.

При мокром способе сырье дробят и размалывают без дополнительной подсушки. Весьма часто помол осуществляют с добавлением воды, глину размешивают в специальных емкостях — болтушках. Смесь готовят тщательным перемешиванием жидких молотых смесей в шламбассейнах. В этом случае подготовленная смесь — цементный шлам — содержит до 40 % и более воды.

При сухом способе тонкое измельчение исходного сырья — помол — осуществляют в сухом состоянии. Тщательное смешивание производят в специальных смесителях. В строительстве наиболее распространен мокрый способ, при котором удается достичь хорошей гомогенности сырьевой смеси, что в конечном итоге обусловливает получение цемента с более высокими и стабильными качествами. В связи с созданием оборудования, обеспечивающего хорошую гомогенизацию в смеси тонкомолотых порошков, сухой способ как более экономичный (не требующий теплоты на испарение воды) и, следовательно, перспективный находит все большее применение.

21. Обжиг клинкера. Химический и минералогический состав клинкера.

Химический состав клинкера определяется содержанием оксидов (% по массе), причем главных из них: СаО 63- 66, SiQ 2 21-24, А120 3 4-8, Fe 2 0 3 2-4; их суммарное количество составляет 95-97 %. В небольших количествах в виде различных соединений могут входить MgO, S0 3 . Na 2 О и К 2 О, а также ТiO 2 . Сг 2 0 3 . Р 2 О 5 . В процессе обжига, доводимого до спекания, главные оксиды образуют силикаты, алюминаты, алюмоферрит кальция в виде минералов кристаллической структуры, а некоторые из них входят в стекловидную фазу.

Минеральный состав клинкера . Основные минералы клинекера . алит, белит, трехкальциевый алюминат и алюмоферрит кальция.

Алит 3CaO-Si0 2 (или C 3 S*) — самый важный минерал клинкера, определяющий быстроту твердения, прочность и другие свойства портландцемента; содержится в клинкере в количестве 45-60 °С. Алит представляет собой твердый раствор трехкальциевого силиката и небольшого количества (2-4 %) MgO, А1 2 0 3 . Р 2 0 5 . Сг 2 0 3 и других примесей, которые могут существенно влиять на структуру и свойства.

Белит 2CaO-Si0 2 (или C 2 S) — второй по важности и содержанию (20-30%) силикатный минерал клинкера. Он медленно твердеет, но достигает высокой прочности при длительном твердении портландцемента. В интервале между нормальной температурой и 1500 °С существу ет пять кристаллических форм двухкальциевого силиката. Белит в клинкере представляет собой твердый раствор В -двухкальциевого силиката ( В -C 2 S) и небольшого количества (1-3%) А1 2 0 3 . Fe 2 0 3 . MgO, Сг 2 0 3.

Обжиг смеси производится во вращающихся печах, представляющих собой металлические цилиндры, обложенные внутри огнеупорной футеровкой. Печь укладывают на специальные катки с небольшим уклоном к поверхности земли, за счет чего по мере вращения сырьевая смесь продвигается по печи от приподнятого конца к опущенному. Длина печи достигает 180 м, а иногда доходит до 250 м, диаметр — до 6 м. По мере продвижения смесь подсушивается, скатывается в шарики и под действием высокой температуры (1450. 1500 °С) спекается в гранулы размером 5. 20 мм и более. Затем гранулы охлаждаются сначала в печи, в зоне охлаждения, впоследствии — в специальных устройствах — холодильниках.

Существует и достаточно прогрессивный способ обжига клинкера. В печи силикатный расплав заменен расплавом на основе хлористого кальция. Существенно снижается температура обжига (1100. 1150 °С), в 3. 4 раза облегчается помол, но в цементе появляется минерал — алинит, содержащий алюмохлоридсиликат кальция. Этот цемент быстрее твердеет в начальные сроки.

Остывший клинкер подвергают размолу чаще всего в шаровых мельницах, представляющих собой металлические цилиндры диаметром до 3,5 и длиной до 15. 20 м, которые выложены изнутри бронированными плитами. Мельницы имеют 2. 3 камеры, отделенные друг от друга металлическими перегородками с отверстиями для прохождения размалываемого материала.

Размол клинкера и постепенное продвижение размалываемого материала обеспечиваются при вращении за счет наклона мельницы. По выходе из шаровой мельницы портландцемент подают на склад в силосы, где он остывает и выдерживается некоторое время, достаточное для стабилизации.

22. Твердение и основные свойства портландцемента.

Свойства портландцемента. К основным техническим свойствам портландцемента относятся: истинная плотность, средняя плотность, тонкость помола, сроки схватывания, нормальная густота (водопотребность цемента), равномерность изменения объема цементного теста, прочность затвердевшего цементного раствора.

Истинная плотность цемента находится в пределах 3000. 3200 кг/м3, плотность в рыхлом состоянии — 900. 1300 кг/м3, в уплотненном (слежавшемся) — 1200. 1300 кг/м3.

Тонкость помола характеризуется остатком на сите № 08 или удельной поверхностью, проверяемой на специальном приборе ПСХ. Согласно ГОСТ через сито № 08 должно проходить не менее 85 % массы пробы, удельна

Следующая новость
Предыдущая новость

Где в Белгородской области провести новогодние выходные Дожди в Белгородской области будут идти как минимум до конца недели Старый Оскол отметил 425-летие В Ракитном строят культурно-спортивный центр за 120 млн рублей Депутат Константин Коротаев примет участие в конкурсе на кресло главы Первоуральска

Лента публикаций