Реферат По дисциплине: «Строительные конструкции» на тему

Реферат По дисциплине: «Строительные конструкции» на темуРеферат По дисциплине: «Строительные конструкции» на тему.

^ 1.1 Железобетон — комплексный материал.

Железобетон представляет собой комплексный строительный материал, состоящий из бетона и стальных стержней, работающих в конструкции совместно в результате сил сцепления.

Известно, что бетон хорошо сопротивляется сжатию и значительно слабее растяжению (в 10—20 раз меньше, чем при сжатии), а стальные стержни имеют высокую прочность как при растяжении, так и при сжатии. Основная идея железобетона и состоит в том, чтобы рационально использовать лучшие свойства составляющих материалов при их совместной работе. Поэтому стальные стержни (арматуру) располагают так, чтобы возникающие в железобетонном элементе растягивающие усилия воспринимались в большей степени арматурой. В изгибаемых элементах, например в плитах, балках, настилах и др. основную арматуру размещают в нижней, растянутой зоне сечения (рис. 1.1, а), а в верхней, сжатой зоне ее либо совсем не ставят, либо ставят небольшое количество, необходимое для конструктивной связи стержней в единые каркасы и сетки. В элементах, работающих на сжатие, например в колоннах (рис. 1.1, б), включение в бетон небольшого количества арматуры также значительно (в 1,5—1,8 раза) повышает их несущую способность. Возникающие в колоннах растягивающие напряжения от поперечных деформаций воспринимаются хомутами или поперечными стержнями; последние служат также для связи продольных стержней в плоские или пространственные каркасы. В растянутых элементах (рис. 1.1, в) действующие усилия воспринимаются арматурой.

В изгибаемых и внецентренно нагруженных элементах в местах действия поперечных сил возникают главные растягивающие ? Г. Р напряжения, которые уже не могут восприниматься продольной арматурой растянутой зоны. Если такие места не заармировать, то появятся наклонные трещины примерно под углом 45°. Для воспринятая главных растягивающих напряжений и предотвращения образования трещин в балках, например, ставят хомуты или поперечные стержни, а при необходимости и нижнюю продольную арматуру отгибают под углом 45—60° вверх с заделкой в сжатой зоне бетона (рис. 1.1, г). Таким образом, соединенные бетон и стальные стержни создают качественно новый материал — железобетон (или точнее сталебетон), область применения которого практически не ограничена.

Основу совместной работы бетона и арматуры составляет благоприятное природное сочетание их некоторых важных физико-механических свойств, а именно.

1) сталь и бетон имеют близкие по значению коэффициенты линейного расширения — для бетона 0,00001— 0,000015, для стали 0,000012, поэтому при температурных изменениях (до 100° С) дополнительные напряжения в зоне контакта арматуры с бетоном не возникают и сцепление не нарушается, оба материала работают совместно.

2) бетон при твердении дает некоторую усадку, благодаря чему его сцепление с арматурой еще больше увеличивается.

3) плотный тяжелый бетон является хорошей защитой арматуры от коррозии и огня.

Благодаря многочисленным положительным свойствам железобетона — долговечности, огнестойкости, высокой прочности и жесткости, плотности, гигиеничности и сравнительно небольшим эксплуатационным расходам конструкции из него широко применяют во всех областях строительства. Предварительное напряжение железобетона дает возможность повысить трещиностойкость и жесткость конструкций и тем самым еще более расширить область их использования, особенно для большепролетных конструкций покрытий и перекрытий.

^ 1.2 Монолитные железобетонные конструкции.

Железобетонные конструкции, возводимые в проект­ном положении непосредственно на объекте строитель­ства, называются монолитными.

Для возведения монолитных железобетонных конст­рукций требуются поддерживающие подмости (леса) и опалубка (формы), в которую устанавливают арматур­ные каркасы и укладывают бетон. Подмости и опалубку снимают после того, как бетон приобретает достаточную прочность. Если арматурный каркас выполнен из прокат­ных профилей (жесткая арматура) или в виде фермочек, сваренных из круглых стержней (несущие арматур­ные каркасы), то опалубку подвешивают к арматуре и устройства подмостей не требуется. Монолитные железо­бетонные конструкции требуют значительных трудовых затрат на объекте строительства. Их применяют в мас­сивных сооружениях, в некоторых специальных сооруже­ниях, которые могут быть возведены без подмостей в скользящей или переставной опалубке (водонапорные башни, дымовые трубы, градирни, стены и шахты много­этажных зданий и др.). Монолитный железобетон часто используют в конструкциях фундаментов, для устройст­ва днищ резервуаров и т. д.

^ 1.3 Сборные железобетонные конструкции.

Железобетонные конструкции, изготавливаемые на специализированных заводах, называются сборными. Такие конструкции монтируют на строительной площад­ке и при необходимости соединяют между собой путем сварки арматурных стержней или стальных закладных деталей. Стыки элементов затем бетонируют или зали­вают цементным раствором.

Применение сборных железобетонных конструкций (сборного железобетона) обеспечивает высокую инду­стриализацию строительства благодаря использованию высокопроизводительных машин и механизмов как при изготовлении элементов, так и при их монтаже. Это по­зволяет снизить трудовые затраты на строительной пло­щадке, сократить сроки строительства, ликвидировать сезонность строительных работ.

При проектировании сборных железобетонных конст­рукций необходимо руководствоваться следующими принципами.

1) принимать минимальное число типоразмеров.

2) максимально укрупнять элементы (с учетом грузо­подъемности монтажных механизмов и транспортных средств.

3) обеспечивать технологичность изготовления эле­ментов, т. е. предусматривать такую их форму и разме­ры, при которых изготовление их на заводе будет удоб­ным и высокопроизводительным.

4) обеспечивать технологичность монтажа элементов, т. е. наиболее удобное их транспортирование и установку в проектное положение, а также соединение с другими элементами.

5) рассчитывать сборные элементы не только на усилия, которые они будут испытывать при. эксплуатации, но и на усилия, которые возникнут в процессе их транс­портирования и монтажа. Так, колонна, установленная в проектное положение, работает от воздействия эксплу­атационных нагрузок на сжатие, а при подъеме и транс­портировании — на изгиб, как балка, загруженная соб­ственным весом.

Железобетонные конструкции, которые возводят из сборных элементов, но отдельные участки бетонируют на месте строительства, называют сбор номонолитным и. Такие конструкции в ряде сооружений позволяют упростить узловые сопряжения и получить жесткую про­странственную систему как при монолитном железобе­тоне.

^ 1.4 Предварительно-напряженные железобетонные конструкции.

Как отмечалось выше, при загружении железобетон­ного элемента наблюдается раннее образование т-рещин в бетоне растянутой зоны. С ростом нагрузки растягива­ющие напряжения воспринимаются арматурой, а трещи­ны в бетоне раскрываются. Для большого числа конст­рукций, арматура которых имеет обычную прочность (не высокопрочная), ширина раскрытия трещин при дейст­вии предусмотренных расчетом нагрузок незначительна и не нарушает их эксплуатационных качеств. В тех слу­чаях, когда к конструкции предъявляются требования непроницаемости (резервуары, трубы), когда конструк­ция снабжена высокопрочной арматурой или Находится в условиях агрессивной среды, появление трещин или значительное их раскрытие может привести к потере экс­плуатационных качеств. Чтобы предотвратить образова­ние трещин или ограничить ширину их раскрытия в бето­не растянутой зоны конструкции, при ее изготовлении заранее создают значительные сжимающие напряжения путем натяжения арматуры (см. гл. XXII). В такой кон­струкции возникающие при работе под нагрузкой растя­гивающие напряжения только погашают предваритель­ное сжатие в бетоне, поэтому образование трещин значи­тельно отдаляется. Такие железобетонные конструк­ции называют предварительно-напряжен­ными.

Благодаря эффективному использованию высоко­прочной арматуры в предварительно-напряженных кон­струкциях, повышенной их жесткости и ряду других преимуществ эти конструкции нашли широкое примене­ние в практике строительства.

^ 1.5 Классификация и области применения железобетонных конструкций.

Все железобетонные конструкции можно разделить на несколько видов.

а) по назначению — на конструкции для жилищного, общественного, промышленного, сельскохозяйственного и мелиоративного, транспортного, энергетического строительства и др.

б) по материалу — из тяжелого бетона, из бетона на пористых заполнителях и из ячеистого бетона.

в) по способу выполнения — монолитные, возводимые непосредственно на объекте строительства; сборные, изготовляемые на заводах и полигонах; сборно-монолитные, возводимые из сборных элементов с добетонированием отдельных участков на месте строительства.

г) по способу армирования — с обычным армированием (каркасами, сетками и отдельными стержнями) и предварительным напряжением арматуры из высокопрочных стержней, проволоки или арматурных канатов.

С развитием строительной индустрии широкое распространение получили сборные железобетонные конструкции, которые в наибольшей степени отвечают требованиям максимальной индустриализации строительства. Монолитный железобетон в настоящее время применяется в особых случаях, например в индивидуальных с нетиповыми пролетами зданиях, в зданиях, возводимых в подвижной опалубке, и при достаточном технико-экономическом обосновании. Сборно-монолитные конструкции выгодны для большепролетных и других конструкций, когда добетонирование участков и замоноличивание стыков конструкций повышает общую пространственную прочность и жесткость здания или сооружения, в результате чего достигается и экономический эффект. На основные виды сборных конструкций имеются каталоги с указанием номенклатуры изделий, выпускаемых заводами для того или иного вида строительства.

^ 1.6 Развитие производства железобетона.

Железобетон, несмотря на некоторые недостатки (большую собственную массу изделий, высокую тепло- и звукопроводность, возможность появления трещин при изготовлении и эксплуатации конструкций и др.), которые малозначительны в сравнении с его многочисленными достоинствами, является основой современного капитального строительства. Массовое применение, как отмечено выше, имеют сборные железобетонные конструкции, которые не только отвечают требованиям индустриализации строительства, но и позволяют улучшить качество конструкций при их полкой заводской готовности, монтировать здания круглый год и снизить трудоемкость и стоимость их возведения.

В современном строительстве из сборного железобетона возводят одноэтажные (рис. 1—3) и многоэтажные промышленные здания, жилые крупнопанельные дома (рис. 4), мосты и эстакады, стойки ЛЭП, сельскохозяйственные строения, объекты подземные и наземные в гидротехническом и мелиоративном строительстве, коллекторы, тоннели и станции метрополитенов, сооружения связи и многие другие.

^ 2. Основные сведения о материалах для железобетонных конструкций.

Бетон для железобетонных конструкций должен обладать необходимой прочностью, хорошим сцеплением с арматурой, достаточной плотностью для защиты арматуры от коррозии, морозостойкостью, а также в особых случаях жаростойкостью при длительном действии высоких температур (более 200° С) и коррозионной стойкостью при агрессивном воздействии среды.

Бетоны подразделяют по следующим признакам.

1) по структуре — плотной структуры (процент меж-зерновых пустот не свыше 6), крупнопористые малопесчаные и беспесчаные, поризованные с искусственной пористостью затвердевшего вяжущего в пространстве между зернами заполнителя (процент пустот более 6); ячеистые о искусственно созданными порами.

2) по плотности (объемной массе) ? кг/м 3 .— особо тяжелые, ? > 2500; тяжелые, 2200 6 кгс/см 2.

? 0,00015?2?000?000 = 300 кгс/см 2 (30 МПа.

Таким образом, расчетное усилие, воспринимаемое сечением при образовании трещин, (1.

Если N>N Т . в элементе образуются трещины. При дальнейшем увеличении нагрузки напряжения в арматуре будут возрастать, а трещины в бетоне — раскрываться (стадия II). Внешней силе по сечению с трещиной сопротивляется только одна арматура, имеющая напряжения ? а и деформации ? а . а на участке между трещинами — арматура и бетон, поскольку сцепление между ними сохраняется. Вследствие этого напряжения в арматуре на участке между трещинами уменьшаются. Средние напряжения в арматуре ? а.с 2 ; по табл. 5 (d>l0 мм) R a =3600 кгс/см 2 ; E a =2000000 кгс/см 2 ; E б =240000 кгс/см 2.

Площадь сечения арматуры определим из условия прочности по формуле: =20000/3600=5,58cм 2. Принято 4?14 A-III с F a =6,16 см 2.

Теперь рассчитаем ширину раскрытия трещин.

Напряжения в арматуре по сечению с трещиной.

от длительной нагрузки.

от кратковременной нагрузки.

коэффициент армирования ; d=14мм; ? =1.

С д равно: при кратковременной нагрузке 1, при длительной нагрузке 1,5.

Ширина раскрытия трещин от длительной нагрузки по формуле при k=l,2 равна.

Приращение ширины раскрытия трещин от кратковременной нагрузки: =0,07 мм.

Расчет внецентренно-растянутых элементов.

Площадь сечения арматуры А, расположенной ближе к линии действия силы N, обозначают F a . а арматуры. А?, удаленной от силы, — F а ?. Характер работы внецентренно-растянутых элементов под нагрузкой зависит от эксцентрицитета е 0 . Если сила приложена между центрами тяжести сечений арматуры А к А? (для прямоугольного сечения, когда ), то имеем случай малых эксцентрицитетов. При малых эксцентрицитетах трещины пронизывают бетонное сечение элемента еще при относительно небольшой нагрузке; после этого продолжает работу только арматура (рис. 3, а). Несущая способность элемента оказывается исчерпанной при достижении арматурой предельных напряжений.

Условия прочности получим, составив уравнения моментов относительно центров тяжести сечений арматуры А и А?: , (.6) где ; , (7) здесь.

При подборе сечений арматуры из условия определяют (8), а из условия — (9.

Если растягивающая сила N приложена вне расстояния между центрами тяжести арматуры А и А? :[для прямоугольного сечения, когда ], имеем случай больших эксцентрицитетов.

Характер работы внецентренно-растянутых элементов при больших эксцентрицитетах подобен.работе внецентренно-сжатых элементов с большими эксцентрицитетами: часть сечения сжата, а часть растянута (рис.6); высота сжатой зоны (для прямоугольного сечения) ограничивается условием . Предельную относительную высоту сжатой зоны определяют по формуле.

Разрушение сечения наступает, когда напряжения в арматуре А, а затем в бетоне сжатой зоны и в арматуре А? достигают предельных значений (для расчета — расчетных сопротивлений.

Проектируя все силы на ось элемента, получаем (10.

Уравнение моментов относительно центра тяжести арматуры А имеет вид (11.

Сравнив выражения (10) и (11) с, и устанавливаем, что условия прочности имеют тот же вид, что и при внецентренном сжатии, меняется только знак у силы N (растяжение вместо сжатия.

Прочность элемента проверяют по условий (11), предварительно определив высоту сжатой зоны х из формулы (10). Если , то в условии (11) принимают.

Прочность внецентренно-растянутых элементов по наклонному сечению рассчитывают так же, как проч­ность изгибаемых элементов, но поскольку растягивающая сила N способствует более раннему образованию косых трещин и уменьшает усилие , воспринимаемое бетоном сжатой зоны в наклонном сечении, в формулы и вводят понижающий коэффициент : , но не менее 0,2. (12.

Расчет внецентренно-растянутых элементов на образование трещин аналогичен рассмотренному выше расчету изгибаемых и внецентренно-сжатых элементов и состоит в проверке условия.

Из рис. 4 видно, что . (13.

Величины , и определяют по формулам, изгибаемых железобетонных элементов.

Ширину раскрытия трещин при определяют по формуле при k=1,2 и напряжениях в арматуре А: ; (14) —см. рис. 4; если сила приложена между арматурой А и А', величину в формуле (14) принимают со знаком минус. Величину определяют по формулам сжатых железобетонных элементов в формуле перед вторым членом меняется знак. Когда , принимают.

Расчет прогибов внецентренно-растянутых элементов полностью подобен расчету сжатых железобетонных элементов, прогибов внецентренно-сжатых элементов, но в формуле кривизны перед вторым членом, выражающим кривизну от силы N, знак минус меняется на плюс, поскольку и от заменяющего момента , и от силы N кривизны имеют один знак.

^ 4. Преварительно напряженные железобетонные конструкции.

4.1 Расчет центрально-растянутых преварительно-напряженных элементов.

Рассмотрим последовательное изменение напряженно-деформированного состояния центрально-растянутого предварительно-напряженного элемента изготовляемого с натяжением арматуры на упоры (рис. 12). Площадь сечения бетона , площадь сечения напрягаемой арматуры.

Состояние I. Уложенная в форму арматура натянута до.

Состояние II. Элемент забетонирован. Арматура удерживается в напряженном состоянии упорами, но в ней произошли первые потери напряжений и напряжения стали равны.

Состояние III. Бетон набрал необходимую прочность. Арматура отпущена с упоров. Вследствие сцепления между арматурой и бетоном произошло обжатие бетона до напряжений . Элемент укоротился. Бетон и арматура получили одинаковую деформацию, т. е.

Напряжения в арматуре в результате обжатия элемента уменьшились на.

Таким образом, напряжения в арматуре равны.

Равнодействующая растягивающих напряжений в арматуре уравновешивается равнодействующей сжимающих напряжений в бетоне, поэтому уравнение равновесия внутренних сил в сечениях имеет вид.

Состояние IV. В арматуре произошли вторые потери напряжений , и соответственно уменьшились сжимающие напряжения в бетоне до величины . Поскольку , напряжения в арматуре составляют.

Уравнение равновесия внутренних сил в сечениях имеет вид.

Состояния I—IV наблюдаются до загружения элемента внешней нагрузкой.

Теперь будем прикладывать к элементу внешнюю растягивающую силу N. Под воздействием этой силы элемент будет удлиняться и, следовательно, напряжения предварительного сжатия в бетоне будут уменьшаться, а напряжения в арматуре — возрастать.

Работа элемента под нагрузкой также характеризуется тремя стадиями: стадия I —до образования трещин, Стадия II—после образования трещин, стадия III—перед разрушением.

Состояние V. При некотором значении внешней растягивающей силы напряжения предварительного сжатия в бетоне будут доведены до нуля, т. е. напряжения в бетоне уменьшатся на . Из условия совместности деформаций напряжения в арматуре возрастут на , т. е. уменьшение напряжений в арматуре, которое произошло в состоянии III вследствие обжатия бетона, восстанавливается. Напряжения в арматуре равны.

Уравнение равновесия внешних и внутренних сил в сечениях имеет вид.

Состояние VI. При дальнейшем увеличении внешней силы в бетоне возникают растягивающие напряжения и возрастают напряжения в арматуре. Когда напряжения в бетоне достигнут временного сопротивления растяжению (для расчета эти напряжения принимают равными ), в элементе образуются трещины. При изменении напряжений в бетоне от нуля (состояние V) до напряжения в арматуре ввиду совместности ее деформаций с бетоном увеличатся на кгс/см 2 (см.гл. 3.1). Таким образом, в рассматриваемом состоянии напряжения в арматуре равны.

Усилие, воспринимаемое элементом перед образованием трещин, (31.

По состоянию VI рассчитывают трещиностойкость (расчет по образованию трещин), который состоит в проверке условия (32), где N—расчетное усилие; N T —определяется по формуле (31) при ? 0 . вычисленном с m T 2. (39.

Прежде чем выполнять расчет ширины кратковременного раскрытия трещин и расчет их закрытия (в элементах, к которым предъявляются требования 2-й категории по трещиностойкости), следует проверить, образуются ли в элементе трещины при расчетных значениях постоянной, длительной и кратковременной нагрузок (с коэффициентами перегрузки n>1). Если при указанных нагрузках N>N T . требуется выполнять расчет ширины раскрытия трещин и расчет их по закрытию. Если , трещины в элементе не образуются, т. е. соблюдаются требования 1-й категории.

^ 4.2 Расчет внецентренно-растянутых преварительно-напряженных элементов.

При расчете прочности внецентренно-растянутых элементов с малыми эксцентрицитетами в арматуре A H и принимают расчетные сопротивления растяжению R H и в расчетные формулы и добавляют члены, учитывающие усилия в напрягаемой арматуре: ; (62) ; (63.

В случае больших эксцентрицитетов, когда сила N приложена за пределами сечения, — при расчете проч­ности имеем полную аналогию внецентренному сжатию.

Расстояния а и а' принимают до центра тяжести всей арматуры, расположенной с одной стороны сечения.

При расчетные формулы, с учетом обратного зна­ка у силы N, имеют вид.

Если из формулы (64) получается , то в условие (65) подставляют.

Расчет на образование трещин по условию.

выполняют и для предварительно-напряженных внецент- • ренно-загруженных элементов. При этом, как и в нена­пряженных элементах: —при внецент-ренном сжатии; —при внецентренном растяжении.

Момент от действия усилия обжатия N o находят, как и в изгибаемых элементах, по формуле (44.

Расстояние до ядровой точки определяют по формуле ; (63) для внецентренно-растянутых элементов и по формуле ; (45)—для сжатых. Ширину раскрытия нормальных трещин рассчитывают также по формуле при напряжениях в арматуре, равных ; (66.

Здесь е а — расстояние от линии действия силы N до центра тяжести арматур А н и А. Во внецентренно-растяч нутых элементах с малыми эксцентрицитетами, когда сила приложена между арматурой А н (или А н и А) и ар­матурой (или и А'), принимают со знаком минус. a Z 1 =Z a — расстоянию между арматурами. В первом чле­не числителя формулы (66) знак плюс соответствует внецентренному растяжению, знак минус — внецентрен­ному сжатию.

Расчет прогибов внецентренно-сжатых и внецентренно-растянутых предварительно-напряженных элементов при отсутствии трещин полностью аналогичен рассмот­ренному выше расчету прогибов изгибаемых элементов. Если трещины есть, кривизну определяют по формуле (54) при моменте М з . который должен быть прило­жен к сечению в результате переноса силы N и силы обжатия N o на линию центра тяжести растянутой армату­ры, и при суммарном усилии N c во втором члене форму­лы. N c =N+N o —при внецентренном сжатии; N c = -N+N o — при внецентренном растяжении.

При подсчете коэффициента ? а по формуле принимают , где знак плюс соответствует моментам, вызывающим растяжение в арматуре А н (или А н и А.

Строительные конструкции: Учебник для техни-С 86 кумов/С. Г. Стронгин, Г. А. Шестак, Ю. С. Тимян-ский, П. П. Сербинович.—2-е изд. перераб.—М. Стройиздат, 1979.— 520 с. ил.

Новое в проектировании бетонных и железобетонных конструкций под/ред А.А. Гвоздева.

Преднапряженные конструкции в бетоне том II - Т.Н. Цай и др. техн. наук проф.

Проектирование и расчеты железобетонных и каменных конструкций Н.Н. Попов; А.В. Забегаев.

Следующая новость
Предыдущая новость

В Первоуральске внук-наркоман выбросил 84-летнюю бабушку из окна «Эфко» приглашает белгородских студентов участвовать в «Карьерном прорыве» Металлоинвест презентовал первые результаты развития бизнес-системы* Чемпионские бои по боксу прошли в Первоуральске «Первоуральск — не Чикаго»

Лента публикаций